
Package index
-
aggregate_by_de() - Collapse Replicates by Differential Expression
-
check_zeroinflation() - Quick group-aware zero-inflation check (Negative Binomial baseline via edgeR)
-
compute_chem_descriptors() - Compute chemical descriptors from SMILES
-
compute_de_umap() - Prepare DE-based umap
-
compute_hyper_enrich_bg() - Calculate enrichment of DE genes in a gene set Compute one‐sided hypergeometric p-values, z-scores, and combined scores for a list of differentially expressed genes (
deg) against each entry in a list of gene sets (genesets). Internal function
-
compute_multi_de() - Perform DE of multiple samples in a screen vs control
-
compute_multi_enrichr() - Perform enrichR-style analysis on a screen
-
compute_multi_screen_profile() - Find similarities between expression profiles with fgsea. Mitochondrial/ribosomal genes are filtered from the analysis
-
compute_multiple_dose_response() - Model Gene Dose-Response Curves Across Treatments
-
compute_normalised_counts() - Retrieve normalised counts of MAC-seq data
-
compute_qc_metrics() - Calculate QC metrics
-
compute_single_de() - Retrieve normalised counts of MAC-seq data
-
compute_single_dose_response() - Model Gene Dose-Response Curve Using drc
-
compute_single_enrichr() - Pathway enrichment analysis
-
compute_smiles() - Annotate tidyseurat object with SMILES
-
convert_human_to_mouse() - For a given gene set of human symbols return mouse symbols
-
download_geneset() - Title
-
filter_genes_by_expression() - Filter genes by expression and grouping
-
find_clusters_de_umap() - Calculate clusters for umap based on DE analysis
-
genesets - Pathway gene‐sets for PMMSq033
-
macpie_colours - Color palettes used by macpie
-
macpie_theme() - colour theme for macpie plots
-
mini_mac - A small example MACseq plate
-
plot_counts() - Generate a box plot to show gene expression (CPM)
-
plot_de_umap() - Plot UMAP dimensionality reduction on DE genes
-
plot_distance() - Create a distance heatmap
-
plot_gene_ranks() - Generate a knee plot A knee plot to show total number of total read counts for each gene in a given treatment group
-
plot_mds() - Plot MDS dimensionality reduction
-
plot_metadata_heatmap() - Generate Heatmaps of Metadata Function
-
plot_multi_de() - Generate heatmap of DE genes from multiple treatments This is the function to generate a heatmap of DE genes from running compute_multi_DE that shared by more than one treatment group. There are a few options available to help you to extract shared DE genes.
-
plot_multi_screen_profile() - Plot multi-screen profile from fgsea results
-
plot_plate_layout() - Plot MAC-seq data on a plate layout
-
plot_qc_metrics() - Create a lollipop chart
-
plot_qc_metrics_heatmap() - Create a heatmap for multiple QC metrics
-
plot_rle() - Create an RLE Plot
-
plot_volcano() - Volcano plot of differentially expressed genes
-
read_metadata() - Read Metadata from a File
-
select_robust_controls() - Select high-quality control replicates via TMMwsp log-CPM correlation
-
subsample_genes() - Subsample genes (fast helper function for zero-inflation checks)
-
summarise_de() - Generate a table to summarise gene numbers from a differential expression test.
-
validate_metadata() - Check and clean the metadata file generated from findmetadata function