
Model Gene Dose-Response Curves Across Treatments
Source:R/compute_multiple_dose_response.R
compute_multiple_dose_response.Rd
This function fits dose-response models for a set of genes across different treatments
using the drc
package. It returns EC50 values per gene per treatment.
Usage
compute_multiple_dose_response(
data,
genes = NULL,
normalisation = "limma_voom",
control_value = "DMSO",
batch = 1,
k = 2,
num_cores = 1
)
Arguments
- data
A Seurat or TidySeurat object containing expression data and metadata.
- genes
A character vector of gene names to model. If NULL, all significant DE genes across comparisons are used.
- normalisation
A character string indicating the normalization method. One of: "raw", "logNorm", "cpm", "clr", "SCT", "DESeq2", "edgeR", "RUVg", "RUVs", "RUVr", "limma_voom", "zinb". Default is "limma_voom".
- control_value
A string indicating the control condition in "Treatment_1". Default is "DMSO".
- batch
Batch variable to use for normalization if applicable. Default is 1.
- k
Number of unwanted factors for RUV normalization. Default is 2.
- num_cores
Number of CPU cores to use in parallel model fitting. Default is 1.
Examples
if (FALSE) { # \dontrun{
rds_file <- system.file("extdata/PMMSq033/PMMSq033.rds", package = "macpie")
mac <- readRDS(rds_file)
res <- compute_multiple_dose_response(
data = mac,
genes = c("PTPRA", "MYC"),
normalisation = "limma_voom",
treatment_value = "Camptothecin",
num_cores = 2
)
head(res)
} # }