
Perform enrichR-style analysis on a screen
Source:R/compute_multi_enrichr.R
compute_multi_enrichr.Rd
Perform enrichR-style analysis on a screen
Usage
compute_multi_enrichr(
data,
genesets = NULL,
species = NULL,
direction = "both",
p_value_cutoff = 0.01,
n_distinct = 10
)
Arguments
- data
A tidyseurat object merged with metadata. Must contain columns "Well_ID", "Row", "Column".
- genesets
Named list of genes
- species
One of "human", "mouse", "fly", "yeast", "worm" or "fish"
- direction
Direction of the differentially expressed genes, one of "up", "down", "both" (default).
- p_value_cutoff
Cutoff for adjusted p-value (column p_value_adj), default 0.01
- n_distinct
Minimum number of genes in a geneset, default 5
Examples
data(mini_mac)
data(genesets)
compute_multi_enrichr(mini_mac, genesets = genesets)
#> # A Seurat-tibble abstraction: 308 × 21
#> # Features=500 | Cells=308 | Active assay=RNA | Assays=RNA
#> .cell orig.ident nCount_RNA nFeature_RNA Plate_ID Well_ID Row Column
#> <chr> <fct> <dbl> <int> <chr> <chr> <chr> <int>
#> 1 AACAGGCAAT PMMSq033_mi… 65 29 PMMSq033 B02 B 2
#> 2 AACCAGCCAG PMMSq033_mi… 522 97 PMMSq033 C02 C 2
#> 3 AACCAGTTGA PMMSq033_mi… 415 82 PMMSq033 D02 D 2
#> 4 AACCGGCGTA PMMSq033_mi… 578 93 PMMSq033 E02 E 2
#> 5 AACCTAGTCC PMMSq033_mi… 286 72 PMMSq033 F02 F 2
#> 6 AACTCTACAC PMMSq033_mi… 515 96 PMMSq033 G02 G 2
#> 7 AACTGTGTCA PMMSq033_mi… 408 87 PMMSq033 H02 H 2
#> 8 AAGATGTCCA PMMSq033_mi… 332 78 PMMSq033 I02 I 2
#> 9 AAGCATATGG PMMSq033_mi… 498 92 PMMSq033 J02 J 2
#> 10 AAGCTCACCT PMMSq033_mi… 539 102 PMMSq033 K02 K 2
#> # ℹ 298 more rows
#> # ℹ 13 more variables: Species <chr>, Cell_type <chr>, Model_type <chr>,
#> # Time <fct>, Unit <chr>, Treatment_1 <chr>, Concentration_1 <fct>,
#> # Unit_1 <chr>, Sample_type <chr>, Project <chr>, combined_id <chr>,
#> # percent.mt <dbl>, percent.ribo <dbl>