
Model Gene Dose-Response Curve Using drc
Source:R/compute_single_dose_response.R
compute_single_dose_response.Rd
Model Gene Dose-Response Curve Using drc
Usage
compute_single_dose_response(
data,
gene = NULL,
pathway = NULL,
normalisation = "limma_voom",
treatment_value,
control_value = "DMSO",
batch = 1,
k = 2
)
Arguments
- data
A Seurat or TidySeurat object containing expression and metadata.
- gene
A gene name (must match a row name in the object).
- pathway
A character string present in the list of enriched pathways.
- normalisation
One of "raw", "logNorm", "cpm", "clr", "SCT", "DESeq2", "edgeR", "RUVg", "RUVs", "RUVr", "limma_voom", "zinb". If empty, defaults to cpm
- treatment_value
A character string matching one value in metadata column "Treatment_1".
- control_value
A character string matching one value in metadata column "Treatment_1".
- batch
Either empty, a single value, or a vector corresponding to the number of samples
- k
Parameter k for RUVSeq methods, check RUVSeq tutorial
Examples
if (FALSE) { # \dontrun{
rds_file<-system.file("/extdata/PMMSq033/PMMSq033.rds", package = "macpie")
mac<-readRDS(rds_file)
res <- compute_single_dose_response(data = mac,
gene = "PTPRA",
normalisation = "limma_voom",
treatment_value = "Camptothecin")
res$plot
res <- compute_single_dose_response(data = mac,
pathway = "Myc Targets V1",
treatment_value = "Camptothecin")
res$plot
} # }